Effect of positioning error on the Hilgenreiner epiphyseal angle and the head-shaft angle compared to the femoral neck-shaft angle in children with cerebral palsy.
Sullivan ES, Jones C, Miller SD, Min Lee K, Seok Park M, Wilson DR, Mulpuri K, d'Entremont AG. Effect of positioning error on the Hilgenreiner epiphyseal angle and the head-shaft angle compared to the femoral neck-shaft angle in children with cerebral palsy. J Pediatr Orthop B. March 2022 . DOI: 10.1097/BPB.0000000000000923
Abstract
Children with cerebral palsy (CP) often have changes in proximal femoral geometry. Neck-shaft angle (NSA), Hilgenreiner epiphyseal angle (HEA) and head-shaft angle (HSA) are used to measure these changes. The impact of femoral rotation on HEA/HSA and of ab/adduction on HEA/HSA/NSA is not well known. This study aimed to determine and compare the effect of rotation, ab/adduction and flexion/extension on HEA/HSA/NSA. Radiographic measurements from 384 patients with Gross Motor Function Classification System (GMFCS) levels I–V were utilized. NSA/HSA for affected hips were used with femoral anteversion averages to create three-dimensional models of 694 hips in children with CP. Each hip was rotated, ab/adducted and flexed/extended to simulate malpositioning. HEA/HSA/NSA of each model were measured in each joint position, and differences from correct positioning were determined. Mean HEA error at 20° of internal/external rotations were −0.60°/3.17°, respectively, with the NSA error of −6.56°/9.94° and the HSA error of −3.69°/1.21°. Each degree of ab/adduction added 1° of the HEA error, with no NSA/HSA error. NSA was most sensitive to flexion. Error for all measures increased with increasing GMFCS level. HEA/HSA were minimally impacted by rotation. NSA error was much higher than HEA/HSA in internal rotation and flexion whereas HEA was sensitive to changes in ab/adduction. Given abduction is more easily detectable on imaging than rotation, HEA may be less affected by positioning errors that are common with children with CP than NSA. HSA was least affected by position changes. HEA/HSA could be robust, complementary measures of hip deformities in children with CP.